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Abstract. The deexcitation of exotic hydrogen atoms in highly excited states in collisions with hydrogen
molecules has been studied using the classical-trajectory Monte Carlo method. The Coulomb transitions
with large change of principal quantum number n have been found to be the dominant collisional deex-
citation mechanism at high n. The molecular structure of the hydrogen target is shown to be essential
for the dominance of transitions with large ∆n. The external Auger effect has been studied in the eikonal
approximation. The resulting partial wave cross-sections are consistent with unitarity and provide a more
reliable input for cascade calculations than the previously used Born approximation.

PACS. 34.50.-s Scattering of atoms and molecules – 36.10.-k Exotic atoms and molecules
(containing mesons, muons, and other unusual particles)

1 Introduction

Exotic hydrogen atoms x−p (x− = µ−, π−, K−, p̄) are
formed in highly excited states with the principal quan-
tum number n ∼ √

µxp/me where µxp is the reduced
mass of the exotic atom [1,2]. For a long time the ini-
tial stage of the atomic cascade remained poorly under-
stood despite a substantial progress in theoretical and ex-
perimental studies (see [3–5] and references therein). In
particular, the dominant collisional deexcitation mecha-
nism was unclear for 40 years since the so-called chemical
deexcitation was introduced in [1] as a phenomenological
solution to the problem of the cascade time at high n (the
external Auger effect alone would give much longer cas-
cade times). A shortage of experimental data related to
the initial stage of the atomic cascade hindered theoret-
ical studies of this problem. The experimental situation,
however, changed recently as more data on the atomic
cascades in exotic hydrogen atoms at low density became
available. The cascade time of antiprotonic hydrogen mea-
sured by the OBELIX collaboration [6] in the density
range 3–150 mbar was found to be significantly shorter
than the prediction of the conventional cascade model [7].
The new experimental results on the atomic cascade in
muonic hydrogen from the PSI experiment [8] provided
detailed information not only on the cascade time, but
also on the energy distribution at the end of the cascade,
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which at low density is actually preserved from the initial
stage after the fast radiative deexcitation takes over the
collisional processes.

The goal of this paper is to investigate the collisional
deexcitation mechanisms for highly excited exotic atoms.
In particular, we are interested in the role of the Coulomb
acceleration in highly excited states and in the competi-
tion between the acceleration and slowing down in quasi-
elastic collisions. Both molecular and atomic hydrogen tar-
gets were used in our calculations in order to investigate
the role of molecular effects.

The paper is organized as follows. The classical-
trajectory Monte Carlo method is described in Section 2.
The results of calculations of Coulomb, Stark, and trans-
port cross-sections for the µ−p and p̄p atoms are presented
in Section 3. The Auger deexcitation is discussed in Sec-
tion 4. The conclusions are summarized in Section 5.

Unless otherwise stated, atomic units (~ = e =
me = 1) are used throughout this paper. The unit of
cross-section is a2

0 = 2.8 × 10−17 cm2, where a0 =
~

2/mee
2 is the electron Bohr radius.

2 Classical-trajectory Monte Carlo calculation

2.1 Effective potential

In the beginning of the atomic cascade, where many nlm-
states are involved in the collisions, classical mechanics
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Fig. 1. Coordinates for the three-body subsystem. C is the
center of mass of the x−p.

Fig. 2. Coordinates for the four-body system.

is expected to be a good approximation. To study the
scattering of exotic hydrogen atoms from hydrogen atoms
or molecules we use a classical-trajectory Monte Carlo
model. The following degrees of freedom are included in
the model: the constituents of the exotic atom (x− =
µ−, π−, K−, p̄ and the proton) and the hydrogen atoms
are treated as classical particles. The electrons are as-
sumed to have fixed charge distributions corresponding to
the 1s atomic state around the protons in the hydrogen
atoms.

We describe the exotic atom as a classical two-body
system with the potential

Vx−p(r) = −1
r
· (1)

The exotic atom interacts with two hydrogen atoms whose
electron distributions are assumed to be frozen in the
ground atomic state (see Fig. 1 for notation):

Vx−p−H(r,R) =
(

1
Rp

+ 1
)

e−2Rp

−
(

1
Rx

+ 1
)

e−2Rx . (2)

The interaction between the hydrogen atoms is described
by the Morse potential

VHH(RHH) = De(e−α(RHH−R0) − 1)2 (3)

where De = 4.75 eV, α = 1.03, and R0 = 1.4 [9]. The
effective potential for the x−p+H+H system (see Fig. 2)
has the form

V = Vx−p(r) + Vx−p−H(r,R1) + Vx−p−H(r,R2)
+VHH(RHH). (4)

2.2 Method of calculation

The classical equations of motion corresponding to the
effective potential (4) were solved using a fourth-order
Runge-Kutta method. The initial conditions were defined
as follows. Given the initial principal quantum number ni

and the orbital angular momentum li of the x−p atom, the
initial classical state was generated as a classical Kepler
orbit with the total CMS energy Exp and the classical
angular momentum lc:

Exp = −µxp

2n2
i

, (5)

lc = li +
1
2
· (6)

The orbit was oriented randomly in space, and the or-
bital x−p motion was set at a random time within the
period. The hydrogen atoms in the target molecule were
set at the equilibrium distance R0, and the molecule was
randomly oriented in space. The impact parameter ρ of
the x−p atom was selected with a uniform distribution in
the interval (0, ρmax), as discussed below. The accuracy
of the numerical calculations was controlled by checking
the conservation of total energy and angular momentum.
Instead of requiring convergence for every individual tra-
jectory, we used the global criteria that the cross-sections
for the various processes (see below) were stable within the
statistical errors against further increase in the numerical
accuracy for each collision.

The final atomic state was determined when the dis-
tance between x−p and the hydrogen atoms after the colli-
sion was larger than 10a0. The final atomic state with the
energy Exp and the angular momentum lc was identified
as corresponding to the final nf lf state according to the
rules similar to (5, 6):

nf − 1
2

< nc =
√

µxp/2|Exp| ≤ nf +
1
2

(7)

lf < lcnf/nc ≤ lf + 1. (8)

In addition to the quantum numbers nf and lf , the CMS
scattering angle θ and the excitation energy of the target
∆Etarget were also obtained. For the purpose of cascade
calculations, we are mainly interested in the reaction chan-
nels that include the x−p atomic states:

(x−p)nili + H2 →



(x−p)nf lf + H2

(x−p)nf lf + H∗
2

(x−p)nf lf + H + H
· (9)

Other possible channels are the breakup reactions

(x−p)nili + H2 →
{

x− + p + H∗
2

x− + p + H + H (10)

and the formation of (x−H)nf lf ions

(x−p)nili + H2 → (x−H)nf lf + p + H. (11)

An example of a collision that results in Coulomb de-
excitation of the µ−p and dissociation of the hydrogen
molecule is shown in Figure 3.
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Fig. 3. An example of a µ−p + H2 collision with impact pa-
rameter ρ = a0 resulting in Coulomb deexcitation of the µ−p
and dissociation of the H2. The exotic atom with laboratory
kinetic energy Ti = 1 eV, ni = 14, and li = 13 enters from the
left, the hydrogen molecule from the right. The trajectories are
plotted in the CMS. In the final state, the µ−p has nf = 10,
lf = 7, and Tf = 4.3 eV.

For a given initial n of the x−p and laboratory kinetic
energy, Ti, a set of the impact parameters ρi, i = 1, ..., K
with a uniform distribution in the interval (0, ρmax) was
generated. The value ρmax = 5 + 2n2

i /µxp was found
to be suitable for all cases concerned. The cross-sections
were obtained from the computed set of trajectories using
the following procedure. Let Pα

i be the probability that
the reaction channel α corresponds to the final state in
collision i:

Pα
i =

{
1, if α occurred
0, otherwise. (12)

The cross-section for the reaction channel α is given by

σα = 2πρmax
1
K

K∑
i=1

ρiP
α
i . (13)

The differential cross-sections are determined in a similar
way by binning the corresponding intervals of variables
like z = cos θ, where θ is the CMS scattering angle, and
the target excitation energy ∆Etarget. For instance, the
differential cross-section dσ(z)/dz is calculated using the
relation

dσ(z)
dz

≈ σ(z − ∆z < cos θ < z + ∆z)
2∆z

· (14)

2.3 Special final states

The formation of x−H ions in reaction (11) is an arti-
fact of our model due to the treatment of the electrons
as fixed charge distributions. The cross-sections for these
processes turn out to be small, and usually the final nf is
small, so that the electron screening is not very important.
For the purpose of cascade calculations, one can count the

x−H formation as the x−p events with the corresponding
values of nf , lf , cos θ, and ∆Etarget. Another channel in-
volving x−H ions is related to the formation of metastable
molecular states like

p(x−H)nf lf (15)

where a deeply bound x−H ion forms a loosely bound state
with the proton. These molecular states can be rather
stable and often do not dissociate within a reasonable
amount of computer time. In our calculations we consider
the metastable molecular states as final states. We used
the following criteria for the metastability: first, the colli-
sion time must exceed

tmol = 50/vinit (16)

where vinit is the initial velocity of the x−p in the labo-
ratory system. With the choice of the time interval (16),
the colliding particles reach their asymptotically free fi-
nal trajectories for most non-resonant collisions. Second,
the x− must form a bound state with one of the hydrogen
atoms and the binding energy must not vary by more than
1% within the time

τ = 20
2πn3

i

µxp
(17)

which corresponds to 20 classical periods of the initial x−p
atom. Once metastability is reached, the event is counted
as an x−H event.

3 Results

The classical-trajectory Monte Carlo method described
in Section 2 has been used to obtain the collisional
cross-sections needed in calculations of the cascades in
µ−p, π−p, K−p, and p̄p. The same method can also be
used in a direct simulation of the atomic cascade with-
out using pre-calculated cross-sections. For µ−p and p̄p
atoms experimental data at low density are available for
direct comparison with the cascade calculations [10]. We
will, therefore, present detailed results for these two cases.
The initial stages also affect the cascades in π−p and K−p
because they determine the kinetic energy distribution in
the intermediate stage of the cascade where nuclear ab-
sorption becomes important.

The calculations have been done for ni = 8–20 for µ−p,
ni = 13–35 for p̄p and 9 values of the laboratory kinetic en-
ergy in the interval 0.05 eV ≤ T ≤ 20 eV. At T = 1 eV the
cross-sections have been calculated down to ni = 4 for µ−p
and ni = 8 for p̄p. For each initial state (ni, T ), 1 000 clas-
sical trajectories have been calculated as described above.
The orbital quantum number li was distributed according
to the statistical weight. For the purpose of illustration, a
larger number of trajectories (up to 10 000) have been cal-
culated for some initial states in order to reduce statistical
errors. Preliminary results have been shown in [11].
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Fig. 4. The n dependence of the muonic hydrogen Coulomb
cross-sections at the laboratory energy T = 1 eV for molecular
(filled diamonds) and atomic (squares) hydrogen target. The
curve is the semiclassical result from [12].

We compare the results of the classical Monte Carlo
(CMC) calculations with those of the semiclassical ap-
proximation. Bracci and Fiorentini [12] calculated the
Coulomb cross-sections for muonic hydrogen scattering
from atomic hydrogen in a semiclassical model. Though
the approach [12] may be unsuitable for treating the
low n states, where more elaborate calculations give much
smaller values for the cross-sections [13], it can be ex-
pected to give a fair description of the high n region. In the
case of Stark mixing we use the fixed field model [14] for
comparison. In the case of molecular target, we obtained a
semiclassical estimate of the Stark cross-sections by using
the spherical symmetric electric field corresponding to the
charge distribution of a H2 molecule in the ground state.

3.1 Muonic hydrogen

3.1.1 Coulomb deexcitation

The n dependences of the total cross-sections of the
Coulomb deexcitation for collisions with molecular and
atomic hydrogen

(x−p)nili + H2 →
{

(x−p)nf lf + H∗
2

(x−p)nf lf + H + H , (18)

(x−p)nili + H → (x−p)nf lf + H (19)

with nf < ni are shown in Figure 4. The cross-sections
increase steadily with increasing n as the µ−p becomes
larger and the energy spacing between the n levels smaller.
The cross-sections for the atomic target at the laboratory
kinetic energy T = 1 eV are very close to the semiclassical
results of Bracci and Fiorentini [12]. The cross-section for
the molecular target is larger by a factor of about 2–3.

An example of the energy dependence of the total
Coulomb cross-sections (nf < ni) for ni = 13 is shown
in Figure 5. The cross-sections calculated with molecular
target are approximately twice as large as the atomic ones
in the whole energy range considered. The CMC result

Fig. 5. The energy dependence of the Coulomb cross-sections
for muonic hydrogen with ni = 13 and molecular (filled dia-
monds) and atomic (squares) hydrogen target. The error bars
are statistical. The curve is the semiclassical result from [12].

Fig. 6. The nf dependence of the Coulomb cross-sections for
muonic hydrogen with ni = 13 and laboratory kinetic en-
ergy T = 1 eV for collisions with molecular (filled diamonds)
and atomic (squares) hydrogen target. The semiclassical result
from [12] is shown with filled circles.

for the atomic target is in fair agreement with the semi-
classical result [12] for energies above 1 eV. The energy
dependence of the CMC cross-sections is approximately
given by 1/

√
T corresponding to constant rates. This is in

contrast to the 1/T behavior found for low energies in [12].
The distribution over final states nf is com-

pletely different for the molecular and the atomic tar-
gets as illustrated in Figure 6 showing the l-average
cross-sections σ13→nf for µ−p at 1 eV. The calculations for
atomic target predict that ∆n = 1 transitions dominate
the Coulomb deexcitation in agreement with the semiclas-
sical result [12]. For the molecular target, the transitions
with ∆n > 1 are strongly enhanced as compared to the
atomic case. The shape of the nf distribution depends on
the initial state ni: with decreasing ni it becomes nar-
rower and its maximum shifts towards smaller values of
∆n. For ni = 13, the transitions ∆n = 2–3 dominate. Fig-
ure 7 shows the nf dependence for initial state ni = 9: the
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Fig. 7. The nf dependence of the Coulomb cross-sections
for muonic hydrogen with ni = 9 and laboratory kinetic en-
ergy T = 1 eV for collisions with molecular (filled diamonds)
and atomic (squares) hydrogen target. The semiclassical result
from [12] is shown with filled circles.

Fig. 8. Stark cross-sections for muonic hydrogen for molecu-
lar (filled triangles) and atomic (circles) hydrogen target. The
curves show the results of the fixed field model for molecular
target (solid line) and atomic target (dashed line). The labo-
ratory kinetic energy is T = 1 eV.

transitions with ∆n = 1 are most likely, but the ∆n > 1
transitions still make up a substantial fraction of 38% of
the Coulomb cross-section as compared to 19% for atomic
target.

3.1.2 Stark mixing and elastic scattering

The Stark collisions change the orbital angular momentum
while preserving the principal quantum number:

(x−p)nili + H2 → (x−p)nilf + H∗
2 (H + H), (20)

(x−p)nili + H → (x−p)nilf + H. (21)

The CMC results for the n dependence of the l-average
Stark mixing cross-section are shown in Figure 8. The
Stark cross-sections calculated with molecular target are
less than twice the atomic ones. This is due to two rea-
sons. First, there is a considerable molecular screening

Fig. 9. The energy dependence of the Stark cross-sections for
muonic hydrogen in the state n = 9 for molecular (filled tri-
angles) and atomic (circles) hydrogen target. The curves show
the results of the fixed field model for molecular target (solid
line) and atomic target (dashed line).

effect because the electric fields from the two hydrogen
atoms partly cancel each other. Second, the Coulomb
cross-section makes up a larger fraction of the total cross-
section in the molecular case. The classical Monte Carlo
results for the atomic target are in a good agreement
with the semiclassical fixed field model. At low n, where
the inelasticity due to the Coulomb deexcitation is small
and can be neglected in the calculation of the Stark
cross-sections, there is a good agreement between the clas-
sical Monte Carlo results for the molecular target and the
corresponding semiclassical model.

Figure 9 shows the energy dependence of the Stark
cross-sections for n = 9. The classical-trajectory model
and fixed field model are in agreement with each other
for kinetic energies above 10 eV (molecular target) and
2 eV (atomic target). At lower energies where the Coulomb
transitions make up a substantial part of the cross-
sections, the fixed field model overestimates the Stark
cross-sections.

The Stark mixing and elastic scattering processes,
(20) and (21), lead to a deceleration of the exotic atom.
Their importance in the kinetics of atomic cascade can be
estimated with the corresponding transport cross-section

σtr
n =

∫
(1 − cos θ)

dσn→n

dΩ
dΩ (22)

where dσn→n/dΩ is the differential cross-section for the
processes (20) or (21) averaged over l. This estimate based
on the transport cross-section neglects the Coulomb deex-
citation process which can lead to both deceleration and
acceleration, and, in the case of molecular target, the ad-
ditional deceleration due to excitation of the H2 molecule.
The n dependence of the transport cross-sections at 1 eV
for muonic hydrogen scattering from hydrogen atoms and
molecules is shown in Figure 10. There is a fair agreement
between the CMC and the fixed field model for atomic tar-
get below n ∼ 8. For higher n, the inelastic effects due to
the Coulomb deexcitation process become important, and
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Fig. 10. The n dependence of the transport cross-sections for
muonic hydrogen at T = 1 eV. The results of the classical
Monte Carlo model with molecular (filled circles) and atomic
target (circles) are shown in comparison with the semiclassical
fixed field model.

Fig. 11. Differential cross-section dσ/dz for muonic hydrogen
for ni = 13 and laboratory kinetic energy T = 1 eV. The
classical Monte Carlo results for atomic target are shown with
filled diamonds and the curve corresponds to the semiclassical
fixed field model for atomic target.

the fixed field model overestimates the transport cross-
section. For molecular target, the discrepancy between the
two models is larger because the Coulomb cross-section
makes up a larger fraction of the total cross-section as
compared to the CMC model with atomic target (for
n = 10 and T = 1 eV the fractions are ∼ 0.24 for molecu-
lar target and ∼ 0.11 for atomic target).

Figure 11 shows the l-averaged differential cross-
section (using 20 equally spaced bins in z) summed over all
the final channels for ni = 13 in the classical Monte Carlo
model with atomic target. The cross-section is in good
agreement with that of the semiclassical fixed field model.
The pattern of maxima and minima in the semiclassi-
cal differential cross-sections is a characteristic feature of
quantum mechanical scattering, which, of course, cannot
be reproduced in a classical model.

The kinetic energy of the x−p in the final state is im-
portant for detailed cascade calculations. Let Tx−p, TH

Fig. 12. Distribution over the µ−p kinetic energy as a frac-
tion of the total energy in the final state, Tµ−p/Ttot, for the
Coulomb deexcitation of muonic hydrogen in the initial states
ni = 9, 13 at the laboratory kinetic energy T = 1 eV. The
phase space distribution is shown for comparison. The vertical
arrows indicate the µ−p final energies of the two-body final
states µ−p + H (at.) and µ−p + H2 (mol.).

and TH2 be the CMS kinetic energies of the x−p, the H
(for atomic target), and the H2 (for molecular target). The
total kinetic energy is shared among the two (x−p and H)
or three atoms (x−p and two hydrogen atoms):

Ttot =
{

Tx−p + TH, atomic target
Tx−p + TH2 + ∆Etarget, molecular target. (23)

In the case of atomic target, the energy of the x−p in
CMS is fixed:

Tx−p

Ttot
=

MH

Mxp + MH
(= 0.47 for µ−p) (24)

where MH and Mxp are the masses of the hydrogen atom
and the x−p atom, correspondingly. The case of molecular
target corresponds to a three-body final state with the
kinematical boundaries:

0 ≤ Tx−p

Ttot
≤ T max

x−p

Ttot
=

2MH

Mxp + 2MH
· (25)

The upper boundary (0.64 for muonic hydrogen) is
reached when the hydrogen molecule remains in its ground
state corresponding effectively to a two-body ((x−p) +
(H2)) final state. Figure 12 shows the distributions in
Tx−p/Ttot for Coulomb deexcitations calculated in the
classical Monte Carlo model for muonic hydrogen with
ni = 9, 13 and T = 1 eV. The approximation of effec-
tive two-body final states clearly fails, whereas the pure
phase space distribution

f(Tx−p) =
4Ttot

πT max
x−p

√√√√1 −
(

2Tx−p

T max
x−p

− 1

)2

(26)

gives a fair description of the results.
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Fig. 13. The n dependence of the cross-sections of the cascade
processes in antiprotonic hydrogen calculated in the classical-
trajectory Monte Carlo model for molecular target. The lab-
oratory energy is T = 1 eV. The Stark mixing and transport
cross-sections calculated in the fixed field model for molecular
target are shown with solid and dashed lines, respectively.

Fig. 14. The energy dependence of the cross-sections
of the cascade processes in antiprotonic hydrogen in the
state ni = 25 calculated in the classical-trajectory Monte Carlo
model for molecular target.

3.2 Antiprotonic hydrogen

The atomic cascade in antiprotonic hydrogen starts
around ni ∼ 30; thus classical mechanics is even a bet-
ter approximation than in the muonic hydrogen case. The
n dependence of the Stark mixing, Coulomb deexcitation,
transport, and the p̄H formation cross-sections is shown in
Figure 13, and the energy dependence is demonstrated in
Figure 14. As with muonic hydrogen, the fixed field model
overestimates the Stark mixing and especially the trans-
port cross-section because the inelasticity effects due to
Coulomb deexcitation are not included in this framework.

Figure 15 shows the distribution over the final states nf

for the Coulomb deexcitation of the antiprotonic hydro-
gen at the laboratory energy T = 1 eV. For high n ini-
tial states, the most probable Coulomb transitions are the
ones with a large change of the principal quantum number
(∆n � 1), with the molecular target being essential for

Fig. 15. The nf dependence of the Coulomb cross-sections for
antiprotonic hydrogen for ni = 20, 25, 30 and the laboratory
kinetic energy T = 1 eV. For the sake of clarity we do not
show the statistical error bars.

Fig. 16. The li dependence of the Coulomb (filled diamonds)
and Stark (filled triangles) cross-sections for antiprotonic hy-
drogen for ni = 25 and T = 1 eV. The results are calculated
in the classical Monte Carlo model with molecular target.

this feature. A very important consequence of this result is
that at the beginning of the atomic cascade a small num-
ber of Coulomb transitions is sufficient to bring the p̄p to
the middle stage, where, depending on the target density,
the radiative or Auger deexcitation takes over.

The dependence of the Coulomb cross-sections on the
angular momentum li of the initial state is weak, see Fig-
ure 16 for antiprotonic hydrogen with ni = 25. The Stark
cross-sections show a moderate dependence on li: they are
smaller for the circular states (li = ni − 1) than for the
low li, by about 50%. The reason for this is that the elon-
gated ellipses in the low l states are more easily perturbed
by the electric field of the target molecule. A similar effect
is expected if a quantum mechanical description of the p̄p
is used: the size of the p̄p as estimated by the expectation
value of r2 is given by

〈r2〉 =
n2

2µ2
p̄p

(
5n2 + 1 − 3l(l + 1)

)
. (27)
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For high n states, the expectation value of r2 for the cir-
cular state is only 40% of that of the ns states.

4 External Auger effect in the eikonal
approximation

In our treatment of the Coulomb and Stark mixing colli-
sions in Section 2, the electronic degrees of freedom were
assumed to be frozen. These degrees of freedom, however,
play an important role in the Auger deexcitation process

(x−p)nili + H → (x−p)nf lf + p + e−. (28)

The Auger transitions are often treated in the Born ap-
proximation [1] that gives (conveniently) energy indepen-
dent rates. However, this approximation violates unitarity
for some important ranges of principal quantum numbers
and kinetic energies. For kinetic energies in the range of
few eV, the eikonal approximation [15] provides a more
suitable framework. In this section, we use the eikonal
approach to calculate Stark mixing and Auger deexcita-
tion simultaneously. As a result, the corresponding partial
wave cross-sections are consistent with unitarity.

The cross-section for the process (28) was calculated
in [15] by assuming that the exotic atom moves along a
straight line trajectory with constant velocity v through
the electric field of the hydrogen atom at rest. The cross-
section is given by

σAuger
nili

= 2π

∫ ∞

0

P (ρ)ρdρ (29)

where P (ρ) is the reaction probability for the impact pa-
rameter ρ:

P (ρ) = 1 − e−I(ρ), I(ρ) =
1
v

∫ ∞

−∞
Γnili(

√
ρ2 + z2)dz.

(30)

The reaction rate, Γnili(R), at distance R is the sum of the
partial rates Γnili→nf lf (R) over all final states. According
to [15] the estimated rates are

Γnili→nf lf (R) = γ
1

(R2 + b2)3
+ γ1

k2
e

1 + k2
e

exp(−2R) (31)

where ke is the electron momentum, b = 1.5, and the
parameters γ and γ1 are given by

γ =
210π

3
µ−2

xp

exp ((−4/ke) arctanke)
(1 + k2

e)6(1 − exp(−2π/ke))

×(Clf0
li010

)2(Rnf lf
nili

)2, (32)

γ1 =
16
3ke

µxp
−2(Clf0

li010
)2(Rnf lf

nili
)2 (33)

where Clf0
li010

is a Clebsch-Gordan coefficient and Rnf lf
nili

is
the radial matrix element [16]. The transition rate is pro-
portional to the square of the dipole matrix element, there-
fore only transitions with ∆l = |lf − li| = 1 are possible.

The Auger deexcitation rate, as a function of n, peaks
at the n-value where the energy released in a ∆n = 1 tran-
sition is just sufficient to ionize the hydrogen atom. The
effect of these high-rate Auger transitions is that the in-
elastic cross-sections for some partial waves are not small
in comparison with the unitarity limit. Therefore the cor-
responding inelasticity should be taken into account in the
calculations of other collisional processes. One can expect
that taking the Auger effect into account will reduce the
other inelastic cross-sections. In order to examine this ef-
fect, we include the Auger deexcitation in the framework
presented in [14] for calculating Stark mixing and elas-
tic scattering. In the same way as the nuclear absorption
processes in hadronic atoms were taken into account via
imaginary energy shifts of the ns-states, the Auger de-
excitation process is included via the imaginary absorp-
tion potential, −iΓnl(R)/2. The calculations can be done
in the close-coupling model, the semiclassical model, and
the fixed field model. In the case of the fixed field model,
the time-dependent Schrödinger equation for the set of the
linear independent solutions forming the n2×n2 matrix A
is given by

iȦ(t) = H(t)A(t) (34)

where the interaction is given by

H(t) = Z
1

R2(t)
(1 + 2R(t) + 2R2(t))e−2R(t)

+∆E − i
Γ (R)

2
· (35)

Here ∆E is a diagonal matrix corresponding to the en-
ergy shifts due to the vacuum polarization and the strong
interaction. The term Γ (R) is a diagonal matrix with the
matrix elements Γnl(R). The factor Z originates from the
dipole operator and has the following matrix elements
(i = |nlΛ〉, j = |n(l − 1)Λ〉):

Zij = − 3n

2µxp

√
(l2 − Λ2)(n2 − l2)
(2l + 1)(2l − 1)

· (36)

The solution of equation (34) using the method described
in [14] gives the scattering matrix SFF. The cross-sections
for the transitions nili → nilf are given by

σnili→nilf =
1

2li + 1
π

k2

∑
J

(2J + 1)

×
∑
Λ

|〈ni; JMΛlf |SFF − 1|ni; JMΛli〉|2 (37)

and the ones of the Auger deexcitation by

σAuger
nili

=
1

2li + 1
π

k2

∑
J

(2J + 1)
(
(2li + 1)

−
∑
Λlf

|〈ni; JMΛlf |SFF|ni; JMΛli〉|2
)
. (38)
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Fig. 17. The energy dependence of the Auger deexcitation
rates for muonic hydrogen in liquid hydrogen. The results of
the eikonal approximation are shown with solid lines and those
of the Born approximation with dashed lines.

 

Fig. 18. The n dependence of the Auger deexcitation and
Stark mixing rates at 1 eV for muonic hydrogen in liquid hydro-
gen. The results of the eikonal multichannel model are shown
with solid lines. The Auger deexcitation rates calculated in the
the Born approximation and the Stark mixing rates obtained
without Auger deexcitation are shown with dashed lines.

We will refer to this framework as the eikonal multichannel
model.

The l-average Auger deexcitation cross-sections calcu-
lated with the method of [15] (Eqs. (29, 30)) agree closely
with our results in the eikonal multichannel model. Fig-
ure 17 shows the l-average ∆n = 1 Auger deexcitation
rates in muonic hydrogen for n = 3, 5, 7. The rates have
been calculated in the eikonal approximation and the Born
approximation. The rates in the eikonal approximation
are lower in the low energy range, but they approach the
ones of the Born approximation for high energies. The n
dependence of the Auger deexcitation and Stark mixing
rates for muonic hydrogen is presented in Figure 18. The
two approaches are in a fair agreement with each other
except for the states n = 6, 7 where the Auger rates have
the highest values. For the state n = 7, the Stark mix-
ing rates are reduced by almost 50% when the inelasticity
due to the Auger effect is included. This resembles the
situation with the eikonal and the Born approximations

Fig. 19. The J dependence of the l-average partial wave
cross-sections for muonic hydrogen for n = 7 and laboratory
kinetic energy T = 3 eV. The cross-sections for Auger deexci-
tation with ∆n = 1 are shown with diamonds, those of Stark
mixing with histograms, and the unitarity limit with a thick
solid line.

Fig. 20. The initial l dependence of the Auger deexcitation
cross-sections at 1 eV for muonic hydrogen at n = 7. The
result of the eikonal multichannel model is shown with filled
circles and that of method [15] with filled squares.

which disagree when the Auger deexcitation cross-sections
are large, in which case the eikonal approximation gives
smaller cross-sections than the Born approximation. The
explanation of this effect is given in Figure 19 showing
the average partial wave cross-sections for the collision
(µp)n=7 + H. The Auger deexcitation cross-sections are
saturated in the low angular momentum region and, there-
fore, the Born approximation fails. Though the l-average
results agree for the two eikonal approaches, the l de-
pendence of the cross-sections in the eikonal multichannel
model is weaker because of the effect of Stark mixing as
demonstrated in Figure 20. The eikonal approximation as
described above does not give the differential cross-section
and distribution over final lf for the Auger transitions.
The partial wave cross-sections, Figure 19, show that the
main contribution to the Auger cross-section comes from
low partial waves, i.e. from the strong mixing region. This
suggests that the distribution in lf is nearly statistical and
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that the differential cross-section is less forward-peaked
than the elastic and Stark differential cross-sections [14].

5 Conclusions

The collisional deexcitation mechanisms of the exotic hy-
drogen atoms in highly excited states have been investi-
gated in detail using the classical-trajectory Monte Carlo
method. The Coulomb transitions have been shown to
be the dominant mechanism of collisional deexcitation of
highly excited exotic atoms. Target molecular structure
has large effects on the Coulomb deexcitation. In par-
ticular, the distribution over the final states favors large
change of the principal quantum number n contrary to the
case of atomic target. This feature is very important for
the cascade kinetics as it leads to a fast deexcitation and
a significant acceleration at the initial stage of the atomic
cascade [10]. The calculated cross-sections provide a more
reliable theoretical input for further cascade studies by re-
moving the long standing puzzle of the so-called chemical
deexcitation [1], which was used, on purely phenomenolog-
ical grounds, in many cascade calculations without clari-
fication of underlying dynamics.

The external Auger effect has been studied in an
eikonal multichannel model which allows us to calculate
Stark mixing, elastic scattering, and Auger deexcitation
simultaneously. Partial wave cross-sections computed in
this framework are consistent with unitarity. For ranges of
principal quantum numbers and kinetic energies where the
unitarity constraint is important, the Auger cross-sections
computed in this model are significantly lower than those
of the Born approximation [1].

The first results of cascade calculations using the
cross-sections of [14] and the present paper have been

presented in [17,18]. More detailed results of the cas-
cade calculations will be discussed in a separate publi-
cation [10].

We thank F. Kottmann, L. Simons, D. Taqqu, and R. Pohl for
fruitful and stimulating discussions.
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